Building High End Embedded SoCs using Energy Efficient Application Processors

Kinjal Dave
Product Manager

ARM Tech Symposium, China
Agenda

- Trends in Embedded Computing

- Cortex®-A processors in embedded applications
 - Use case: Smart home
 - Use case: Wearable devices

- Building Embedded SoCs using Cortex-A processors

- Summary
We Live in a Mobile and Connected World
Consumer Trends Driving Innovation in Embedded

- Rich User Interface
- Fast responsiveness
- “Always On” Connectivity
- Personalization
- Content On Demand
- Commerce
- Security
- Low Power
Use Case: Smart Home - Thermostat

- Programmable
- LCD Display
- Connected
- Rich display
- Learning
Use Case: Smart Home - Thermostat

Key Requirements
• Rich User Interface
• Higher performance than traditional embedded solutions
• Small is beautiful
• Connectivity to cloud

http://www.ifixit.com/Teardown/Nest+Learning+Thermostat+2nd+Generation+Teardown/13818/1

ARMv7-A architecture
NEON™ multimedia extensions
Floating Point Unit (FPU)
Thumb®
TrustZone®
Memory Management Unit (MMU)
Market Opportunity in Wearable Devices

Source: IMS Research, Juniper Research

- **Activity monitors account for about 65% growth in this market in 2016**
- **Smart Watches to drive volume growth**
- **Continuous Glucose Monitoring (CGM) largest market in 2016**

Applications

- **Fitness and Wellness**
- **Healthcare and medical**
- **Infotainment**

Up to 210 Million

- **$30B Revenue**
- **96 Million devices**
- **in 2018**
- **$ 8.5B Revenue**
- **in 2012**

CAGR 11-16%
ARM is at the Heart of Wearable Tech

- Nike Fuelband
- Samsung Gear
- Google Glass
- Oakley Airwave
- Fitbit
- MotoActiv
- Misfit
- Sony
- Pebble
- Kopin
- Golden-i
Wearable Device Categorization

- **Simple OS**
 - No Display
 - BT Tether

- **Simple OS**
 - E-Ink Display
 - BT Tether

- **Simple OS**
 - Colour Display
 - Touch Screen
 - BT Tether
 - Audio

- **Simple OS**
 - Colour Display
 - Touch Screen
 - BT Tether
 - Audio

- **Rich OS**
 - Colour Display
 - Graphics
 - Touch Screen
 - BT Wi-Fi
 - Audio
 - GPS
 - Camera

- **Rich OS**
 - Colour Display
 - Graphics
 - Touch Screen
 - BT Wi-Fi
 - Audio
 - GPS
 - Camera

Device power/complexity/Form factor

- **Basic Wearable**
- **Mid range Wearable**
- **High End Wearable**

Wearable Phone
Use Case: Wearable Computing – Smart Glasses

The Google Glass probably needs no introduction!

And there are more of these……..
Use Case: Wearable Computing - Smart Glasses

Key Requirements
- High performance in very small form factors
- Very low power video and audio processing capabilities
- Low active power consumption
- Aggressive power management for extending battery life

Cortex-A9 Dual-core
- Symmetric Multiprocessing (SMP) support
- High efficiency superscalar pipeline
- NEON media processing engine
- Floating point unit (FPU)
- Thumb-2
- TrustZone support

http://www.catwig.com/google-glass-teardown/
Key Requirements for Wearable Devices

<table>
<thead>
<tr>
<th>Video/Image</th>
<th>Audio</th>
<th>Display</th>
<th>Software/OS</th>
<th>Connectivity</th>
<th>Battery life (current products)</th>
<th>Battery life (future products)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LED</td>
<td>Simple</td>
<td>BT LE</td>
<td>4 - 7 Days</td>
<td>Several months</td>
</tr>
<tr>
<td></td>
<td></td>
<td>120x120</td>
<td>120x120</td>
<td>120x120</td>
<td>BT LE</td>
<td>Weeks to month</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LCD</td>
<td>LCD</td>
<td>LCD</td>
<td>BT LE</td>
<td>Week to few days</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basic</td>
<td>Basic UI</td>
<td>BT</td>
<td>2 - 3 Days</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UI</td>
<td>LCD</td>
<td>BT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basic</td>
<td>LCD</td>
<td>BT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Audio</td>
<td>LCD</td>
<td>BT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Still</td>
<td>LCD</td>
<td>BT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Camera</td>
<td>LCD</td>
<td>BT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Commands</td>
<td>LCD</td>
<td>BT WiFi GPS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Commands</td>
<td>LCD</td>
<td>BT WiFi GPS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Performance, Functionality, User Interface

- **SIMPLE**: Basic UI
- **BASIC**: Basic UI
- **RICH**: Rich OS
- **VOICE**: Voice commands
- **AUDIO**: Basic Audio
- **VIDEO**: Still camera
- **CONNECTIVITY**: BT LE, BT, BT WiFi GPS, WiFi GPS

Battery Life
- **Current Products**: 4 - 7 Days, 2 - 3 Days, 1 Day
- **Future Products**: Several months, Weeks to month, Week to few days
Which Application Processor for High End Embedded?

All Cortex-A series processors have a fundamental focus on high energy efficiency.

Cortex-A Series

- **Cortex-A57**
 - ARMv8
 - 64/32-bit
- **Cortex-A53**
 - ARMv8
 - 64/32-bit
- **Cortex-A12**
 - ARMv7
 - Mid-range mobile
- **Cortex-A15**
- **Cortex-A9**
- **Cortex-A8**
- **Cortex-A7**

Performance, Functionality

- Mature processors
- New processors

High Efficiency Processors

- Designed for maximum energy efficiency
- Simple, in order pipelines
- Maximum performance at sub 100mW power envelope
- Configurable to tiny sizes
- Ideal for high performance, low power embedded applications

ARM®

THE ARCHITECTURE FOR THE DIGITAL WORLD®
Why High Efficiency Cortex-A for High End Embedded?

Cortex-A5
- 8 stage in-order
- Single issue
- ARMv7-A
- AMBA® 3

Cortex-A7
- 8 stage in-order
- Partial dual issue
- ARMv7-A Extended
- 40b PA, Virtualization
- AMBA 4 ACE

Cortex-A53
- 8 stage in-order
- Full dual issue
- ARMv8-A (64/32-bit)
- AMBA 4 or AMBA 5

Different Performance Points
- Large workload
- Great user experience

Tiny Sizes
- < 0.5 mm²
- Low silicon cost, low power

Very Low Power
- Long Battery Life
- Power saving in each mode

*28nm
Example of a Smart Watch Platform

Cortex-A5 UP Application Processor

Implementation requirements:
• **Small Area (<0.4 mm²)**
 • Small L1 cache sizes (16K/8K)

• **Low frequency**
 • 250-500 MHz
 • Low active power

• **Very low power consumption**
 • Sub 50mW active power
 • Low power modes
 • ~95% standby power reduction

• Low power Cortex-M4 CPU
 • Always On
 • Very low active power
 • Collects data from sensors
Example of a High End Wearable Device Running Rich OS

Cortex-A7 MP Application Processor
- Dual core cluster provides scalable performance
- Sub 100mW active power for entire cluster
- Low power modes reduce standby power
- Energy efficient L2 subsystem reduces overall system power
- Energy efficient NEON engines provide audio and DSP capabilities

Mali™-400 MPI GPU
- Supports rich OS and better graphics capabilities
- Low power modes to reduce standby power
- LPDDR for lower memory power consumption
Lots of Smart Devices Generating Lots of Data

- **Bluetooth LE – Personal world**
 - Personalized ultra low power comms
 - Low latency data connection

- **LTE – Mobile broadband**
 - Permanently connected
 - Enables wireless HD streaming

- **WiGIG – Personal broadband**
 - HD video streaming
 - Split screen gaming

- **NFC – Touch to connect**
 - Touch to pay
 - Touch to share
 - Enables highly secure localized comms
 - Personal notifications
 - Controlling content

- **Sport & Lifestyle**
- **Gaming & toys**
- **Personal devices**
- **Mobile payments**
- **Touch to pay**
- **Touch to share**
- **Recreation**
- **Healthcare**
- **Security**
- **Consumer goods**
End To End: Linking Smart Devices to Cloud

Wearable Devices

Smartphone 'My Personal Hub'

Access Network

Low Energy e.g. BT Smart, 6lowpan, Ant+ etc

Wi-Fi, 3G, LTE

Device Provisioning and Diagnostics

Access Network: e.g. 3G, LTE WiFi

Management Platform

Higher Computing Requirements

Cloud Services

Apps

'Big Data' Storage

Cloud Hosting
Software Development Challenge for High End Embedded

- Conventional embedded systems had simple software requirements
- Embedded applications now integrate more functionality
- Huge increase in software development costs
- Software development from scratch impacts time-to-market significantly
ARM’s Software Ecosystem Advantage for High End Embedded

- The ARM® Connected Community
 - Making easier to design with ARM
 - http://community.arm.com

- Linaro
 - Collaborative engineering enables development of optimized open source devices (www.linaro.org)

- Embedded Software Store: A marketplace developed by ARM & Avnet

ARM’s strong software ecosystem offers several choices and a fast time-to-market for new high end embedded solutions
Silicon Choice Available Today

- Embedded computing spans diverse applications
 - Peripherals to meet application needs
 - Competition and constant innovation

<table>
<thead>
<tr>
<th>Silicon Vendor</th>
<th>Family</th>
<th>ARM Processor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texas Instruments</td>
<td>Sitara AM3x</td>
<td>Cortex-A8 processor</td>
</tr>
<tr>
<td></td>
<td>OMAP</td>
<td>Cortex-A9/A8 processor</td>
</tr>
<tr>
<td>NVIDIA</td>
<td>Tegra</td>
<td>Cortex-A9</td>
</tr>
<tr>
<td>ALTERA</td>
<td>Arria V</td>
<td>Cortex-A9 processor</td>
</tr>
<tr>
<td></td>
<td>Cyclone V</td>
<td>Cortex-A9 processor</td>
</tr>
<tr>
<td>XILINX</td>
<td>Zync</td>
<td>Cortex-A9 processor</td>
</tr>
<tr>
<td>Atmel</td>
<td>SAMA5D3x</td>
<td>Cortex-A5 processor</td>
</tr>
<tr>
<td>Freescale</td>
<td>Vybrd</td>
<td>Cortex-A5 processor</td>
</tr>
<tr>
<td></td>
<td>i.MX</td>
<td>Cortex-A9 processor</td>
</tr>
</tbody>
</table>
One Size Does Not Fit All Embedded Applications

Performance

Energy efficiency

Application processors

32-bit, ARMv7
Cortex-A12

64/32-bit, ARMv8-A
Cortex-A53

Cortex-A9

Cortex-A8

Cortex-A7

Cortex-A5

For high end embedded applications in 2015 and beyond

Enabling innovation for a whole new class of high end embedded applications today
Summary

- Trends in consumer are driving innovation in embedded

- High end embedded products shipping with ARM application processors today

- One size does not fit all embedded applications
 - Different ARM application processors available for wide range of embedded applications

- ARM’s strong software ecosystem offers significant advance of lower cost and fast turn around time for new embedded solutions
Thank You