The Next Steps in the Evolution of ARM Cortex-M

Joseph Yiu
Senior Embedded Technology Manager
CPU Group

ARM Tech Symposia China 2015
November 2015
Trust & Device Integrity from Sensor to Server
Device Security Fundamentals

Separation
- Isolate trusted resources from non-trusted
- Isolate non-trusted software
- Reduce attack surface of key components

Trusted Software
- Provision of security services
- Small, well reviewed code

Trusted Hardware
- Hardware assist for cryptography
- Secure access validation built into SoC
Bringing Security to the Smallest Devices

Tomorrow

ARMv8-M architecture
The ARM architecture for ARM® Cortex®-M processors

Provides a security foundation with TrustZone®

New AMBA® 5 AHB5 specification
Extends the security foundation through the ultra-low power SoC
ARMv8-M: Taking Embedded to the Next Level

Security

Taking TrustZone security to the smallest devices

Productivity

Making scalable software development even easier

Bringing security within reach of all developers
Introducing ARMv8-M
ARMv8-M Sub-profiles

Scalable architecture

- ARMv8-M **Baseline**:
 - Lowest cost, smallest, ARMv8-M implementations.

- ARMv8-M **Mainline**:
 - For general purpose microcontroller products
 - Highly scalable
 - Optional DSP and floating-point extensions.
ARMv8-M Baseline Performance & Scalability

Instruction set feature uplift for baseline microcontroller

<table>
<thead>
<tr>
<th>Feature</th>
<th>Key benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware divide</td>
<td>Faster integer divide operation in hardware.</td>
</tr>
<tr>
<td></td>
<td>Removes need for library code.</td>
</tr>
<tr>
<td>Compare and branch</td>
<td>Combined compare-with-zero and branch.</td>
</tr>
<tr>
<td></td>
<td>Faster control code.</td>
</tr>
<tr>
<td>Long branch</td>
<td>Long non-linking branch to compliment branch with link.</td>
</tr>
<tr>
<td></td>
<td>Enables support for cross unit tail calls.</td>
</tr>
<tr>
<td>Wide immediate moves</td>
<td>Pointer and large immediate creation without needing a literal load.</td>
</tr>
<tr>
<td></td>
<td>Provides a linking mechanism for execute-only code.</td>
</tr>
<tr>
<td>Exclusive accesses</td>
<td>Load-link / store-conditional support for semaphore use.</td>
</tr>
<tr>
<td></td>
<td>Enables common semaphore handling between CPUs.</td>
</tr>
<tr>
<td>Interrupt active bits</td>
<td>Active status of all interrupts individually tracked.</td>
</tr>
<tr>
<td></td>
<td>Offers dynamic re-prioritization of interrupts.</td>
</tr>
</tbody>
</table>
ARMv8-M Mainline Variants

Comprehensive instruction set support with optional DSP and floating-point extensions

- Retains Baseline fundamentals.

- Adds extensive 32-bit instruction set
 - ~ 40% performance uplift over Baseline.

- Optional integer digital signal processing (DSP) extension
 - ~ 80 saturating arithmetic and SIMD operations.

- Optional floating-point (FP) extension
 - ~ 45 instructions, IEEE754 compatible single, and/or double precision floating-point operations.
Memory Protection and Watchpoints

Improved programmability and flexibility

- ARMv8-M adopts base and limit style comparators for regions
 - Replaces previous power-of-two size, sized aligned scheme
 - Simplifies software development, encouraging creation of safer software
 - Accelerates programming, potentially reducing context switch times.

- MPU configurable down to 32-byte granularity.

- Debug variable watchpoints also enhanced to support more flexible scheme.
Introducing
ARM TrustZone for ARMv8-M
ARM TrustZone Technology

Bringing ARM security extensions to the embedded world

- Optional security extension for the ARMv8-M architecture
 - Security architecture for deeply embedded processors
 - Enables containerisation of software
 - Simplifies security assessment of embedded devices.

- Conceptually similar and compatible with existing TrustZone technology
 - New architecture tailored for embedded devices
 - Preserves low interrupt latencies of Cortex-M
 - Provides high performance cross-domain calling.
ARMv8-M Additional States

Existing handler and thread modes mirrored with secure and non-secure states

- Secure and Non-Secure code run on a single CPU
 - For efficient embedded implementation.

- Secure state for trusted code
 - New Secure stack pointers for robust operation
 - Addition of stack-limit checking.

- Dedicated resources for isolation between domains
 - Separate memory protection units for Secure and Non-secure
 - Private SysTick timer for each state.

- Secure side can configure target domain of interrupts.
ARMv8-M Interrupt Security

High-performance interrupt handling with register protection

- Subject to priority, Secure can interrupt Non-secure and vice versa
 - Secure can boost priority of own interrupts
 - Uses current stack pointer to preserve context.

- Uses ARMv7-M exception stacking mechanism
 - Hardware pushes selected registers.

- Non-secure interruption of Secure code
 - CPU pushes all registers and zeroes them
 - Removes ability for Non-secure to snoop Secure register values.
Security Defined by Address

All transactions from core and debugger checked

- All addresses are either Secure or Non-secure.

- Policing managed by Secure Attribution Unit (SAU)
 - Internal SAU similar to MPU
 - Supports use of external system-level definition
 - E.g. based on flash blocks or per peripheral.

- Banked MPU configuration
 - Independent memory protection per security state.

- Load/stores acquire NS attribute based on address
 - Non-secure access attempts to Secure address = memory fault.
High Performance Cross-Domain Calls

Efficient microcontroller focussed implementation

- Security inferred from instruction address
 - Secure memory considered to hold Secure code.

- Direct function calls across boundary
 - High performance and high security
 - Multiple entry points
 - No need to go via “monitor” for transitions.

- Uses Secure Gateway instruction “SG”
 - Only permitted in special Secure memory with Non-secure-callable attribute (NSC).
TrustZone for ARMv8-A

Secure transitions handled by the processor to maintain embedded class latency
Cross-Domain Function Calls

An assembly code level example

- **Guard instruction (SG)** polices entry point
 - Placed at the start of function callable from non-secure code.
- **Non-secure → secure branch faults if SG isn’t at target address**
 - Can’t branch into the middle of functions
 - Can’t call internal functions.
- **Code on Non-secure side identical to existing code.**
A Simplified Use Case

Composing a system from Secure and Non-secure projects

- Non-secure project cannot access Secure resources.
- Secure project can access everything.
- Secure and Non-secure projects may implement independent time scheduling.
Microcontroller System

With TrustZone technology

- Security driven from master
 - Dynamically from an ARMv8-M CPU
 - Statically from a simple DMA.
- Propagated by AHB5 interconnect
 - Compatible with existing Cortex-A.
- Enables selective access
 - Individual flash pages
 - Regions of memory
 - Peripherals.
ARMv8-M Ecosystem Development Underway

ARMv8-M provides the standard for the extensive Cortex-M ecosystem to create the security solutions needed in a connected world

Contact us to start your ARMv8-M development
ARMv8-M: Security in Small, Real-time Embedded

- Optimised for small real-time processors
 - Low, deterministic interrupt latency
 - Efficient – every cycle counts

- Hardware based security state switch
 - No hypervisor code and processing overhead

- Fully programmable in C
 - Easy to program, easy to debug

- Transition via a standard function call
 - Transparent to the software developer

System Security

© ARM 2015
ARMv8-M: Increased Software Productivity

- Improved scalability
 - Continuum across product family

- Easier, standardised device protection
 - TrustZone security
 - Simplified MPU

- Enhanced debug
 - Improved trace
 - More flexible breakpoints/watchpoints
The Next Steps in the Evolution of Cortex-M

ARMv8-M

Provides a continuum of performance and compatibility

ARM TrustZone Technology

Simplifies and accelerates security in the microcontroller space

AMBA 5 AHB5

Extends security to the system
Thank you

- The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.
- Copyright © 2015 ARM Limited